1. Introduction

Irritable bowel syndrome (IBS) is a chronic, relapsing gastrointestinal disorder that affects 5-20% of the American population. A number of risk factors for IBS have been identified, including female sex, psychological problems, stress, food intolerance, and bacterial overgrowth of the small intestine (Aagaard et al., 2013). The cardinal symptoms of IBS include abdominal pain, bloating, and changes in bowel habits (Aagaard et al., 2013). The pathophysiology is defined and no intestinal structural abnormalities accompany the syndrome. The quality of life (QOL) of individuals with IBS is severely impaired, with major impacts on the health care system and visits to primary care physicians and gastroenterologists (Coffin et al., 2004). In fact, IBS is the most frequent diagnosis in gastroenterology practices and one of the most frequent diagnoses in primary care practices (Peery et al., 2012). Based on specific symptomatology, patients with IBS can be sub-classified into three major groups: constipation-predominant (IBS-C), diarrhoea-predominant (IBS-D), and mixed bowel patterns (IBS-M), each with an approximately equal distribution. These IBS symptoms are troubling to patients, result in lower QOL, and interfere with social interactions (Coffin et al., 2004).
The ultimate treatment goal for IBS is to provide relief for the multiple symptoms of this condition by using a single, well-tolerated agent. Drug therapies may alleviate some of the symptoms linked with this condition, but none are curative. Therefore, the prospect of long-term treatment efficacy is limited given the current treatment options. There is a clear need for IBS relief procedures that are safe, efficacious, and cost effective (Foxx-Orenstein, 2006).

Probiotics are live micro-organisms that provide health benefits for the host when administered in adequate dosages. In recent years, probiotics have been commonly used to alleviate symptoms in a variety of gastrointestinal disorders. Since dysbiosis may be part of the multifactorial aetiology of IBS, a variety of probiotics have been tested in clinical trials to determine their efficiency and the results have been included in several meta-analyses and review articles (Ford et al., 2014b; Hoveyda et al., 2009; McFarland and Dublin, 2008; Ortiz-Lucas et al., 2013; Whelan and Myers, 2010; Yoon et al., 2015). No firm conclusions could be drawn as to the efficacy of strain-specific probiotics for alleviating the symptoms of IBS. Strong placebo effects, psychological factors, and gender effects make the interpretation of study findings difficult (Ford and Moayyedi, 2010; Lyra et al., 2016; Moayyedi et al., 2010).

The objectives of this clinical trial were to evaluate the effectiveness of a proprietary probiotic product, *Lactobacillus acidophilus* CL1285 + *Lactobacillus casei* LBC80R + *Lactobacillus rhamnosus* CLR2 for relief of specific IBS-related symptoms, improvement in QOL, effect on stool consistency and frequency, and attainment of adequate relief (AR) in otherwise healthy adults with IBS-C, IBS-D and IBS-M subtypes.

2. Materials and methods

Experimental design, study implementation, and data collection

This prospective, double-blind, randomised, placebo-controlled study was registered in Clinicaltrials.gov on March 1st, 2012 as ClinicalTrials.gov identifier: NCT01545037. The protocol was approved by an independent IRB, IntegReview. All participating subjects signed an informed consent. Subjects aged 18 years or older were recruited at 3 clinical study sites located in California, USA.

Subjects ingested 2 capsules active or placebo product with breakfast each day. Each active capsule contained a minimum of 50×10^9 cfu (*L. acidophilus* CL1285, *L. casei* LBC80R and *L. rhamnosus* CLR2) with respective proportions of 1-5%, 80-90%, and 5-15%, plus inert ingredients. The placebo capsules contained the inert ingredients only.

Subjects were required to have met the Rome III criteria for IBS (Shih and Kwan, 2007). The Rome III criteria include presence of recurrent abdominal pain or discomfort at least 3 days/month in the last 3 months, associated with 2 or more of the following: improvement with defecation, onset associated with a change in frequency of stool, and onset associated with a change in form (appearance) of stool. Symptom onset must be at least 6 months prior to diagnosis.

Subjects were required to complete a 7 day placebo run-in period to demonstrate compliance with intake of investigational product (IP) and completion of daily diaries documenting IP consumption, stool frequency, stool consistency as defined by the Bristol Stool Chart (BSC), pain severity, and concomitant medications. Successful completion of the run-in period also required presence of abdominal pain on at least 2 days, associated with at least 2 of the following: improvement with defecation, onset associated with a change in frequency of stool, and onset associated with a change in the form or appearance of the stool. Potential subjects with diagnosed gastrointestinal disease other than IBS, prior abdominal surgery or systemic disease with the potential to confound study results or compromise safety, life expectancy less than 6 months, pregnancy or breastfeeding, lactose intolerance, immunodeficiency, eating disorder, recent use of antibiotics, allergy to the study product, or daily consumption of probiotics, fermented milk, or yogurt were excluded. Following successful completion of the run-in period, 113 subjects were randomised in a 2:1 ratio to active study product or placebo.

Subjects returned to the study site at 6 week intervals for a total of 12 study weeks. At each visit, subjects completed two questionnaires, the IBS-SSS (Symptom Severity Scale) and the IBS-QOL (which includes an overall score and assessment of QOL in eight validated domains: dysphoria, interference with activity, body image, health worry, food avoidance, social reaction, sexual, and relationship) (http://depts.washington.edu/seaqol/docs/IBS-QOL_Info.pdf). Subjects were questioned at each visit as to whether they had had adequate relief of their IBS symptoms. Subjects continued to record stool consistency and frequency, symptom severity, IP consumption, and concomitant medications in diaries, which were collected at each visit and reviewed for legibility and completeness. Returned IP was counted to evaluate compliance, and new IP was issued at Visit 3. Subjects were questioned about any adverse events (AEs) notated in the diary to determine onset and recovery dates and severity. Reported AEs were subsequently classified as to relationship to IP (related, possibly related, unlikely to be related, not related) by the investigator.

Please cite this article as ‘in press’ Beneficial Microbes
Study endpoints

Study endpoints included change in abdominal pain score, distention score, days with pain, score improvements on
the IBS-SSS and IBS-QOL (including the QOL domains), and AR. Changes in stool frequency and stool consistency
over the study period were examined within IBS subtypes and
within subgroups of IBS subtype and gender. Safety
endpoints were the incidence, severity, and relationship
of IP to reported adverse events.

Study populations

A modified intent-to-treat (mITT) population was defined
as subjects who were randomised and received at least one
dose of IP; this population was used for the efficacy analysis
and the safety analysis.

Data management

Data were collected on hard-copy source documents at the
study sites and entered into a web-based relational database.
On-site monitoring of 100% of clinical data fields against
the source document was completed by clinical research
associates; queries were generated as needed for resolution
by site clinical teams. After all the data had been entered
and all queries resolved, the database was hard-locked
for analysis. Data files were then extracted by the study
biostatistician and the subject ID numbers were matched
with their treatment assignments to unblind the study.

Statistical analysis

The number of subjects screened, number randomised,
number withdrawn early, and number completed were
tabulated by treatment group. The mITT population as
a whole was analysed for symptom endpoints and QOL
endpoints, along with subpopulations of IBS subtype and
gender. Changes in stool consistency and frequency were
analysed for the IBS-C and IBS-D subtypes and by gender
within subtype. Descriptive statistics were computed for
baseline and demographic characteristics and tabulated
by treatment group. Descriptive statistics included means,
standard deviations, medians, ranges, and percentages, as
dictated by the form of each variable. Inferential methods
were not applied to baseline characteristics. Compliance
was calculated as percent of intended IP used, determined
by returned bottle counts and subject diaries at weeks 6
and 12, and compared across groups. Compliance was
also defined as intake of 70% or more of intended IP, and
analysed using the chi-square test.

Change in scores between Visit 2 and Visit 4 in the two
treatment groups for the IBS-SSS, the IBS-QOL overall
and domains, pain severity, days with pain in the last 10
days, distention severity, satisfaction with bowel habit, and
interference of IBS with life in general were analysed. Stool
consistency scores were assigned by subjects using the BSC
and recorded in their subject diaries on a daily basis, and
daily stool frequency was determined from the number
of stools entered in the diary. Changes in median stool
consistency and stool frequency during the 7 day run-in
period vs the last 7 days on study were compared. Stool
consistency scores were expressed as median BSC scores
per week, while stool frequency was expressed as median
number of stools per day.

Data analysis revealed that the efficacy endpoints had to
be evaluated within subtypes of IBS and for each gender
separately, and many of the subgroup sample sizes were
small. A large placebo effect was noted for many endpoints.
We therefore elected to control the placebo effect by
comparing change in the active vs placebo groups; the
mean improvement from Visit 2 to Visit 4 was calculated
for each treatment group, and the placebo value was then
subtracted from the active value, divided by the placebo
value, and multiplied by 100. For example, a mean change
in pain severity of 15.0 in the active group vs a mean
change of 10.0 in the placebo group was reported as 50% improvement of active over placebo. This approach was
used for comparing changes in the IBS-SSS, IBS-QOL
and domains, pain severity, days with pain, distention severity,
satisfaction with bowel habit, and interference of IBS with
life in general. The same method was used to compare
changes in stool consistency and frequency.

Analysis of change in stool consistency and frequency was
carried out in subjects in the IBS-C and IBS-D subtypes
and for male and female subjects within those subtypes.
Within each subtype, ‘improvement’ percentage was defined
as the percentage change in the desirable direction for that
subtype. Thus, the results tables report ‘improvement’ as
a positive change for both subtypes, but the definition
is different: for the IBS-C subtype an increase in mean
BSC score (indicating firmer stools) and a
increase in stool frequency were positive scores indicating
improvement of active over placebo. This approach was
used for comparing changes in the IBS-SSS, IBS-QOL
and domains, pain severity, days with pain, distention severity,
satisfaction with bowel habit, and interference of IBS with
life in general. The same method was used to compare
changes in stool consistency and frequency.

At the time the protocol was written, AR was a common
primary endpoint in IBS trials, and was adopted as an
endpoint for this trial. The endpoint IBS-AR had been
shown to be a clinically and statistically relevant benefit in
therapeutic IBS trials with alosetron (Camilleri et al., 1999),
cilansetron, and tegaserod (Kellow et al., 2003; Tack et al.,
2005). The AR consists of a single question: ‘Over the past
week, have you had adequate relief of your IBS symptoms?’
Safety was evaluated by calculating rates of subjects with adverse events in the active and placebo groups, and comparing them descriptively. Specific categories of adverse events were tabulated descriptively. Comparisons of subjects with specific adverse events were descriptive.

3. Results

A total of 113 subjects were enrolled, of which 86 subjects (76.1%) completed study. Completion rates were 73.0% in the placebo group and 77.6% in the active group. Reasons for early discontinuation included loss to follow-up (10.6%), withdrawal of consent (7.1%), and other/unknown (6.1%). No subjects withdrew due to an adverse event.

Demographics and baseline subject characteristics

The distribution of demographic and baseline characteristics of the mITT population are presented in Table 1. The placebo and active groups were comparable in age, gender, and race.

<table>
<thead>
<tr>
<th>Table 1. Demographics and baseline subject characteristics at screening visit, by treatment group, mITT population.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Standard deviation</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Sex (#, %)</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Race/ethnicity (#, %)</td>
</tr>
<tr>
<td>Caucasian, non-Hispanic</td>
</tr>
<tr>
<td>Asian</td>
</tr>
<tr>
<td>Hispanic</td>
</tr>
<tr>
<td>Native American</td>
</tr>
<tr>
<td>African-American or Black</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Distribution of irritable bowel syndrome subtypes

The 113 patients were classified by the investigators at each site as IBS-C, IBS-D, or IBS-M based on their symptoms and history at study entry. The distribution of subjects in the three subtypes varied by clinical site, as shown in Table 2.

Compliance

Subjects in the placebo group consumed 87.0±17.8% of intended dose, while in the active group consumption was 77.3±19.9%. Based on the protocol, consumption of at least 70% of intended IP, 84.4% of subjects in the placebo group and 87.3% of subjects in the active group were defined as compliant.

IBS symptom severity scale

The IBS-SSS consists of questions on severity of abdominal pain, number of days with pain in the last 10 days, severity of abdominal distention, satisfaction with bowel habit, and extent to which IBS interferes with the subject’s life in general. All these except days of pain were scored on a Likert scale with a range of 0-100. When the overall score was computed, no mean improvement of 30% or more favouring the active groups was demonstrated.

In no subgroup of patients did the change in severity of abdominal pain reach 30% for the active vs the placebo arm. However, clinical improvement was seen in many subgroups for the individual symptoms making up the IBS-SSS. Table 3 indicates that the highest percentage of improvement in the score of the IBS-SSS questions was seen in the IBS-D subtype, particularly in females, in whom improvement percentages varied from 50 to 144% in favour of the active treatment. Males in the diarrhoea subtype showed a smaller improvement in ‘satisfaction with bowel habit’ (43%), and ‘interference with activity’ (39%). Advantage in the IBS-C subtype was shown in ‘days with pain’ in females (42%), and in ‘satisfaction with bowel habit’ in both males and females (30 and 33%, respectively).

Table 2. Number and percentage of subjects in each irritable bowel syndrome (IBS) subtype by investigational site, mITT population.

<table>
<thead>
<tr>
<th>Site</th>
<th>IBS-C (#, %)</th>
<th>IBS-D (#, %)</th>
<th>IBS-M (#, %)</th>
<th>Total (#, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden Grove</td>
<td>12 (75.0%)</td>
<td>1 (6.3%)</td>
<td>3 (18.6%)</td>
<td>16 (100.0%)</td>
</tr>
<tr>
<td>San Francisco</td>
<td>12 (23.5%)</td>
<td>22 (43.1%)</td>
<td>18 (34.6%)</td>
<td>52 (100.0%)</td>
</tr>
<tr>
<td>Westlake</td>
<td>16 (35.6%)</td>
<td>29 (64.4%)</td>
<td>0</td>
<td>45 (100.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>40 (35.7%)</td>
<td>52 (46.4%)</td>
<td>21 (18.6%)</td>
<td>113 (100.0%)</td>
</tr>
</tbody>
</table>

1 IBS subtypes: -D = diarrhoea; -C = constipation; -M = mixed type.
Table 3. Summary of individual IBS-SSS questions that showed mean differences of 30% or more in favour of active treatment, mITT population.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Group</th>
<th>Improvement in score, V2 to V4 (mean ± standard deviation (n))</th>
<th>Improvement active vs placebo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days/pain</td>
<td>IBS-M ♀♂</td>
<td>1.00±1.00 (3)</td>
<td>2.25±4.17 (8)</td>
</tr>
<tr>
<td></td>
<td>IBS-C ♀</td>
<td>2.14±2.97 (7)</td>
<td>3.03±3.74 (14)</td>
</tr>
<tr>
<td>Distention severity</td>
<td>IBS-D ♀♂</td>
<td>11.31±21.27 (13)</td>
<td>21.33±23.82 (27)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♀</td>
<td>16.56±15.54 (9)</td>
<td>24.83±24.65 (18)</td>
</tr>
<tr>
<td>Satisfaction with bowel habit</td>
<td>IBS-C ♀♂</td>
<td>23.27±20.37 (11)</td>
<td>30.71±24.12 (21)</td>
</tr>
<tr>
<td></td>
<td>IBS-C ♀</td>
<td>24.71±25.34 (7)</td>
<td>32.21±24.20 (14)</td>
</tr>
<tr>
<td></td>
<td>IBS-C ♂</td>
<td>20.75±9.25 (4)</td>
<td>27.71±25.57 (7)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♀♂</td>
<td>23.00±19.77 (13)</td>
<td>37.82±30.95 (27)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♀</td>
<td>21.44±29.50 (9)</td>
<td>37.72±35.81 (18)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♂</td>
<td>26.50±31.10 (4)</td>
<td>38.00±19.58 (9)</td>
</tr>
<tr>
<td>Interfering with life</td>
<td>IBS-D ♀♂</td>
<td>16.00±21.67 (11)</td>
<td>32.81±26.91 (26)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♂</td>
<td>14.38±20.89 (8)</td>
<td>35.18±30.58 (17)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♂</td>
<td>20.33±27.97 (3)</td>
<td>28.33±18.91 (9)</td>
</tr>
<tr>
<td></td>
<td>IBS-M ♂♂</td>
<td>13.00±33.20 (4)</td>
<td>22.80±23.64 (10)</td>
</tr>
<tr>
<td></td>
<td>All females</td>
<td>24.61±25.86 (18)</td>
<td>35.92±29.66 (40)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♂♂</td>
<td>13.00±20.89 (8)</td>
<td>35.18±30.58 (17)</td>
</tr>
<tr>
<td></td>
<td>IBS-D ♀♀</td>
<td>20.33±27.97 (3)</td>
<td>28.33±18.91 (9)</td>
</tr>
<tr>
<td></td>
<td>All females</td>
<td>16.88±25.85 (17)</td>
<td>26.49±30.73 (40)</td>
</tr>
</tbody>
</table>

1 Irritable bowel syndrome (IBS) subtype groups: -D = diarrhoea; -C = constipation; -M = mixed type.
2 In many of the subgroups the percentage by which active treatment outperformed placebo on individual questions was considerably above our defined threshold of 30%.

IBS quality of life overall scores

Overall scores on the IBS-QOL were examined for the total population, within IBS-C and IBS-D subtypes, and genders, and by gender within subtype. 85 subjects were evaluable for change in overall IBS-QOL score. The percentage improvement in the active vs placebo groups (Table 4) was comparable to the results obtained in IBS-SSS, with positive responses concentrated in the IBS-D subtype and in females. In males of the IBS-D subtype a lower degree of improvement (38%) for the active was seen.

IBS quality of life domain scores

A therapeutic effect of active IP over placebo was demonstrated in female subjects for overall QOL scores (Table 4) and in each of the eight domains (Table 5). The effect in the female subgroup was observed in both the IBS-C and IBS-D subtypes. In the male IBS-D subgroup a...
therapeutic effect was seen for overall QOL score and in four domains.

Adequate relief

For the study population as a whole there was no difference between the two study groups with respect to AR of IBS symptoms at Visits 2, 3, and 4. A strong placebo effect was noted. We additionally analysed data from each of the IBS subtypes to discover whether there were any differences in AR of IBS within the subtypes at any study visit. No differences were found between the two study groups in any of the three IBS subtypes. Analysis of subgroups of males and females, and subgroups by gender within each of the 3 IBS subtypes, yielded similar results.

Stool consistency

In the analysis of stool consistency, a positive change ('improvement') indicates increased BSC score in IBS-C and decreased BSC score in IBS-D. Table 6 shows percent change, active vs placebo, for subgroups with active changes of 30% or more over placebo.

Median stool consistency improved for both the placebo and active treatment groups. Median changes in the placebo group were typically about one BSC scale point, with a range from 0.88 to 1.50, and about 1.75 BSC scale points in the active group, with a range from 1.17 to 1.88. Percent changes echoed those seen in endpoints presented earlier: males and females in the Active IBS-D subtype gave the largest response compared to placebo. For males in the IBS-C subtype there was an advantage of active over placebo, but this was not seen for the IBS-C group overall, nor for females with IBS-C. The largest differences between the treatment groups were seen in the IBS-D subtype, in both males and females. The male subgroup and the subgroup of males with IBS-C also showed improvement in stool consistency vs placebo.

<table>
<thead>
<tr>
<th>Table 5. Summary for eight irritable bowel syndrome-quality of life domain scores, mITT population(^1,2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Subtypes and genders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>All subjects</td>
</tr>
<tr>
<td>Dysphoria</td>
</tr>
<tr>
<td>Interference with activity</td>
</tr>
<tr>
<td>Body image</td>
</tr>
<tr>
<td>Health worry</td>
</tr>
<tr>
<td>Food avoidance</td>
</tr>
<tr>
<td>Social reaction</td>
</tr>
<tr>
<td>Sexual</td>
</tr>
<tr>
<td>Relationship</td>
</tr>
</tbody>
</table>

\(^1\) Irritable bowel syndrome (IBS) subtype groups: -D = diarrhoea; -C = constipation; -M = mixed type.

\(^2\) A negative number indicates that improvement was greater in the placebo group than in the active group.

<table>
<thead>
<tr>
<th>Table 6. Subgroups that showed mean differences of 30% or more for improvement in stool consistency (Bristol Stool Chart), mITT population.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBS subtypes and genders(^1)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>IBS-C ♂</td>
</tr>
<tr>
<td>IBS-D ♀♂</td>
</tr>
<tr>
<td>IBS-D ♀</td>
</tr>
<tr>
<td>IBS-D ♂</td>
</tr>
</tbody>
</table>

\(^1\) Irritable bowel syndrome (IBS) subtype groups: -D = diarrhoea; -C = constipation.
Stool frequency

In the analysis of stool frequency, a positive change ('improvement') indicates increased frequency in IBS-C and decreased frequency in IBS-D. In both the placebo and active groups, stool frequency improved in both the IBS-C and IBS-D subtypes, with subjects in the IBS-C subtype having more frequent stools during their last week on study than during the run-in period, while subjects in the IBS-D subtype reported a decrease in stool frequency over that period. Table 7 shows the IBS subtypes and subgroups in which active outperformed placebo for stool frequency improvement by 30% or more.

Site-specific effects

The Garden Grove clinical site had a particularly interesting subgroup of subjects: among the 16 subjects treated at Garden Grove, 12 were females with severe chronic constipation refractory to treatment. In this subgroup, mean daily stool frequency (an important endpoint for IBS-C; USDHHS, FDA, CDER, 2012) increased on the average 0.25 stools/day in the placebo group and 0.75 stools per day in the active subgroup, a 200% percentage increase for active vs placebo. It is also noteworthy that this clinical site the subjects randomised to active treatment had fewer mean stools per week at baseline than subjects in the placebo group (0.38 vs 0.75 stools/day), making the greater stool increase in the active group.

Safety

A total of 7 subjects reported one or more AEs while on study; 3 of these subjects were in the placebo group and 4 were in the active group. A total of 14 AEs were reported by the 7 subjects; all were mild or moderate in severity except for severe cramping, reported by one subject in the active group. Four events were judged by the investigator to be probably related to study product: dry mouth with increased thirst, increased respiration, nausea, and fatigue. These events were all reported by one subject in the placebo group; the dry mouth and increased thirst persisted throughout the study period but resolved the day before the subject's last study visit. No AEs were judged to be definitely related to study product, and there were no serious AEs.

4. **Discussion**

Discovery of an effective treatment for IBS has been the goal of drug and probiotic studies in recent years. While the subject populations of many probiotic studies have been small, several meta-analyses have been published, and certain probiotic species and strains have been shown to be more effective than others in mitigation of IBS symptoms.
dominant symptoms, including abdominal pain, in 214 patients treated for 4 weeks with *Lactobacillus plantarum* 299V. Halpern et al. noted a significant reduction in an IBS symptoms index with a capsule containing 5×10^9 heat-killed *L. acidophilus* (Halpern et al., 1996). Other *Lactobacillus* strains, such as *L. salivarius* UCC4331 did not show any therapeutic gain over placebo in 75 patients (O’Mahony et al., 2005), nor did *Lactobacillus reuteri* ATCC55730 (Niv et al., 2005), suggesting that some strains of *Lactobacillus* sp. may be more effective than others in this indication.

While some published studies have included laboratory assessments of changes in microbiota, these were beyond the scope of the current study (Aagaard et al., 2013; Somberg, 2012).

The safety profile of the product used in this study has been documented in previous clinical trials (Beausoleil et al., 2007; Gao et al., 2010; Sampalis et al., 2010) and a quality improvement study (Maziade et al., 2015). The mechanism of action of the study product has been demonstrated in some intestinal pathology, but was not investigated in the present study (Auclair et al., 2015). Interestingly, the therapeutic gains observed with our three *Lactobacillus* strains over placebo and observed in other probiotic studies (Mezzasalma et al., 2016; Yoon et al., 2015) surpass those seen in drug studies, which are not free of significant adverse events (Cremolini et al., 2003; Kellow et al., 2003; Tack et al., 2005). Approved drugs have shown worse safety profiles than probiotic regimens, which have demonstrated an advantageous safety profile.

It is of interest to note that few studies have evaluated the effects of probiotics on QOL, and of those that did, many did not find a significant improvement (Halpern et al., 1996; Kellow et al., 2003; Kim et al., 2003; Moayyedi et al., 2010; Niv et al., 2005). A few studies showed improvement in some domains (Guglielmetti et al., 2011; Kajander et al., 2008; Lorenzo-Zúñiga et al., 2014; O’Mahony et al., 2005), but to our knowledge no effect on the ‘interference with activity’ domain has been previously documented. O’Mahony et al. (2005) found lower IBS-QOL scores for *L. salivarius* and *Bifidobacterium infantis* for most domains.

This study provides evidence of therapeutic effects in specific IBS subtypes and subgroups which were seen consistently for different endpoints: stool frequency and consistency, quality of life, improvement in distention severity, days with pain, and satisfaction with bowel habit. Our findings are in agreement with other studies conducted with probiotics and medications, and further studies investigating changes in the intestinal microbiota in IBS associated with our probiotic treatment are needed (Somberg, 2012).

A low incidence of AEs has been observed in previous studies conducted with the study product. This protocol was
based on previous clinical studies conducted in Canada and United States, with the optimal dosage of the product. The study product has also been previously evaluated in adults for antibiotic-associated diarrhoea and Clostridium difficile prevention, demonstrating a large reduction in diarrhoea risk during a C. difficile outbreak in China (Gao et al., 2010). In the last decade of clinical research involving the study product, there have been no serious adverse events (SAEs) related to the study product in any of the clinical trials (Beausoleil et al., 2007; Gao et al., 2010; Mazia de et al., 2015; Sampalis et al., 2010).

There were a number of limitations to the study design. First, our assumption that all three types of IBS would respond similarly and could be analysed together was not supported by the data; there were major differences in response based not only on IBS subtype, but on gender as well. The analysis was thus carried out on small numbers of subjects within these subgroups, and statistical significance could not be expected. Second, the small number of subjects in the IBS-M subgroup greatly limited conclusions about this subtype. Third, the large placebo effect, characteristic of IBS studies, made it difficult to interpret the results. Fourth, this study did not address the mechanisms of action of the probiotic and its interface with the microbiome, which has become a point of interest.

5. Conclusions

The probiotic combination used in this study produced results which varied between genders and subtypes, but its impact on stool consistency and frequency, quality of life, and IBS symptoms in both genders, without severe adverse events, presents a promising therapeutic option for subjects suffering from IBS.

Acknowledgements

The authors thank K. Diaz, C.L. Rideaux, D. Chaparro, R. Anderson, and T. Esaki.

Conflict of interest

Bio-K Plus International Inc. provided funding and IP for the study, and contributed to interpretation of the data. Sprim handled data management, analysis, and medical writing.

References

Gao, X.W., Mubasher, M., Fang, C.Y., Reifer, C. and Miller, L.E., 2010. Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhoea and Clostridium difficile-

