Efficacy of vaginal probiotic capsules for recurrent bacterial vaginosis: a double-blind, randomized, placebo-controlled study

Wang Ya, MD; Cheryl Reifer, PhD; Larry E. Miller, PhD

OBJECTIVE: We assessed the effectiveness of vaginal probiotic capsules for recurrent bacterial vaginosis (BV) prevention.

STUDY DESIGN: One hundred twenty healthy Chinese women with a history of recurrent BV were assigned randomly to daily vaginal prophylaxis with 1 capsule (Probaclac Vaginal; Nicar Laboratories, Inc, Blainville, Quebec, Canada) that contained 8 billion colony-forming units of Lactobacillus rhamnosus, L acidophilus, and Streptococcus thermophilus (n = 58 women) or 1 placebo capsule (n = 62 women) for 7 days on, 7 days off, and 7 days on.

RESULTS: Probiotic prophylaxis resulted in lower recurrence rates for BV (15.8% [9/57 women] vs 45.0% [27/60 women]; P < .001) and Gardnerella vaginalis incidence through 2 months (3.5% [2/57 women] vs 18.3% [11/60 women]; P = .02). Between the 2- and 11-month follow-up period, women who received probiotics reported a lower incidence of BV and G vaginalis. Aside from vaginal discharge and malodor, no adverse events were reported in either study group.

CONCLUSION: Short-term probiotic prophylaxis is well tolerated and reduces BV recurrence and G vaginalis risk through 11 months after treatment.

Key words: bacterial vaginosis, G vaginalis, probiotic

Materials and Methods

This single-center, double-blind, randomized, placebo-controlled trial was conducted at Yuyao/Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Shanghai, China). Enrollment occurred between December 2008 and January 2009. The research practices that were used in this trial were in accordance with the Declaration of Helsinki. The institutional review board at Yuyao/Xinhua Hospital...
approved this protocol (study no. 08-SC-NIC-01), and all subjects provided informed consent before any research activities were initiated.

Inclusion criteria for study participation were healthy women who were 18-55 years old, were currently free from BV, had had ≥2 BV episodes in the previous year, had had no antibiotic treatment within 1 week of study participation, and who were willing to refrain from other intravaginal products (e.g., douche or spermicide). Exclusion criteria included the presence of other causes of vulvovaginitis (e.g., candidiasis or Chlamydia trachomatis), pregnant or lactating, history of daily fermented milk and/or yogurt consumption, allergy to study product ingredients, immunosuppressed state, systemic or intravaginal antibiotic or antifungal therapy within 7 days of study participation, intraepithelial neoplasia or cervical carcinoma that required treatment, and urogenital infection within 21 days of participation.

Subjects who met all study entry criteria and who provided informed consent were assigned randomly to BV prophylaxis (test group) with a proprietary vaginal probiotic capsule (Probaclac Vaginal; Nicar Laboratories, Inc, Blainville, Quebec, Canada) or a placebo capsule (control group) for 7 days on, 7 days off, and 7 days on. The randomization sequence that was used in this trial was generated by a computerized random-number generator (SAS, release 9.2; SAS Institute Inc, Cary, NC). Study products were delivered to the investigative site in identical containers that were labeled only with the lot number and a sequentially numbered patient identification code.

Probaclac Vaginal is a pharmaceutic grade probiotic complex that is produced with 3 DNA-certified proprietary lactic acid bacteria strains. Mother cultures were kept at −80°C to prevent any mutation of probiotic characteristics. Each strain was fermented individually then filtered, lyophilized, and ground into a powder before being blended into the final probiotic complex. Each probiotic vaginal capsule contained 8 billion colony-forming units of live lactic bacteria that included L rhamnosus (6.8 billion stabilized lactic ferments), L acidophilus (0.4 billion stabilized lactic ferments), and Streptococcus thermophilus (0.8 billion stabilized lactic ferments) and lactose. Placebo capsules were of identical appearance, smell, and texture and contained only lactose. Study products were kept secured and double verification was used to ensure correct product administration to study subjects.

Baseline evaluations included a physical examination, vaginal swabs, medical history, concomitant medication use, blood pressure, height, and weight. Each subject received instruction regarding appropriate use of the vaginal capsules. The study product was dispensed in a box that contained 7 vaginal capsules and a vaginal applicator. The women used the study product for 1 week and returned 1 week later to pick up the second box that contained a 1-week supply of capsules. The women returned for follow-up visits at 30 and 60 days after treatment. Follow-up evaluations included the collection of vaginal swabs, an assessment of vaginal flora, and a report of adverse events. The women were contacted by telephone at 10.8 ± 0.2 months after treatment and were asked to confirm or deny the presence of BV symptoms, diagnosis of BV or G vaginalis, and adverse events over the 2- to 11-month follow-up period. If a subject reported a diagnosis of BV, the research staff confirmed this diagnosis with the subject’s treating physician at Yuyao/Xinhua Hospital.

The primary endpoint of this study was BV that was diagnosed at any time during the 2-month follow-up period. BV was diagnosed in the presence of positive results with the Amsel Criteria, which confirms BV in the presence of at least 3 of the following 4 criteria: (1) vaginal pH >4.5, (2) clue cells on microscopy of saline solution wet mount, (3) release of fish amine odor on addition of 10% potassium hydroxide to a drop of vaginal discharge, and (4) characteristic thin, homogenous vaginal discharge. Vaginal swabs were collected and cultured on 5% blood agar, eosin methylene blue agar, and Sabouraud dextrose agar. The plates were evaluated after 24-48 hours incubation at 37°C in microaerophilic conditions.

This study was conducted with triple-blinding procedures. The study product was packaged and labeled by the manufacturer according to the study identification number and treatment assignment. Women were blinded to the treatment that was being received throughout the trial. Investigators and all involved clinicians were blinded to the treatment allocation throughout the course of the study. The blind was broken to investigators, but not patients, in cases of a positive BV diagnosis. Test subjects who experienced BV during the supplementation period continued using the study product. If the infection persisted for >1 week, treatment was supplemented with antibiotics at the physician’s discretion. Control subjects who had BV discontinued the placebo treatment and began a course of antibiotics at the physician’s discretion.

Data analysis

All data were recorded on case report forms, double-entered into a database, verified, and monitored independently for accuracy by Sprim China Ltd. (Shanghai, China). Clinical monitors and biostatisticians were blinded to treatment allocation throughout the entire clinical study and until after all analyses were completed.

Patient randomization was stratified by age (18-30, 31-40, 41-55 years) to minimize confounding age effects between groups. Sample size for this trial was estimated by assuming a 35% BV incidence in the control group, an anticipated 30% BV risk reduction in the test group, 90% statistical power, alpha level of 0.05, and a 17% attrition rate. Overall, 120 women (60 per group) were planned for enrollment.

Statistical analyses were performed with SAS/STAT software (release 9.2; SAS Institute Inc, Cary, NC). Baseline variables were analyzed with independent t tests to assess between-group differences. χ2 and the Fisher’s exact test were used to compare BV and G vaginalis incidence between test and control groups. Odds ratios were calculated by logistic regression. Data are reported as...
mean ± SD or n (%). Statistical significance was set at a probability value of ≤ .05.

RESULTS

Subject retention through the 2-month follow-up visit was 91% (53/58 women) in the test group and 90% (56/62 women) for the control group. All withdrawals were due to personal reasons and unrelated to the study. At the 11-month telephone follow-up interview, 81% of the test group (47/58 women) and 76% of the control group (47/62 women) were contacted (Figure 1). No between-group differences in baseline characteristics were detected (Table 1).

All subjects reported either none or 1 sexual partner within the previous year. Most of the women (85%) were non-smokers; 15% of them reported smoking 1-15 cigarettes each day.

The test group experienced lower BV recurrence rates through 2 months (15.8% vs 45.0%; odds ratio [OR], 0.23; 95% confidence interval [CI], 0.10–0.55; P < .001). BV incidence at each fol-

TABLE 1

Baseline subject characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test (n = 58)</th>
<th>Control (n = 62)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>37.4 ± 10.6</td>
<td>37.2 ± 10.9</td>
<td>.92</td>
</tr>
<tr>
<td>Height, cm</td>
<td>161.9 ± 8.2</td>
<td>160.7 ± 8.4</td>
<td>.43</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>56.1 ± 7.2</td>
<td>56.1 ± 7.2</td>
<td>.99</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>21.4 ± 2.7</td>
<td>21.7 ± 2.8</td>
<td>.55</td>
</tr>
</tbody>
</table>

There was no significant difference between groups for any variable.
low-up visit is presented in Figure 2. *G. vaginalis* incidence was lower in the test group over the 2-month follow-up period (3.5% vs 18.3%; OR, 0.16; 95% CI, 0.02–0.88; P = .02; Figure 3). *G. vaginalis* incidence at each follow-up visit is presented in Figure 3.

The percentage of women who reported a confirmed diagnosis of BV between the 2-month visit and the 11-month follow-up interview remained lower in the test group vs the control group (10.6% vs 27.7%; OR, 0.31; 95% CI, 0.11–0.93; P = .04). A similar beneficial probiotic effect was observed between the 2-month visit and the 11-month follow-up visit for *G. vaginalis* (0% vs 6.4%; P = .08).

Through 2 months after treatment, probiotic prophylaxis was effective in reducing discharge, lowering vaginal pH, and reducing presence of clue cells; however, little effect on malodor was observed (Table 2). Subject-reported incidence of vaginal discharge and malodor between 2 and 11 months after treatment were 3-fold higher in the control group.

Adverse events were defined as any untoward occurrence in a subject, regardless of the relationship with the treatment. Aside from vaginal discharge and malodor, no adverse events were reported in either study group during the course of the trial.

TABLE 2

Gardnerella vaginalis incidence through 2 months after treatment

<table>
<thead>
<tr>
<th>Symptom</th>
<th>1 month, n</th>
<th>2 months, n</th>
<th>11 months, n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test (n = 57)</td>
<td>Control (n = 60)</td>
<td>Test (n = 53)</td>
</tr>
<tr>
<td>Discharge</td>
<td>17 (29.8%)</td>
<td>26 (43.3%)</td>
<td>14 (26.4%)</td>
</tr>
<tr>
<td>pH >4.5</td>
<td>16 (28.1%)</td>
<td>32 (53.3%)</td>
<td>16 (30.2%)</td>
</tr>
<tr>
<td>Malodor</td>
<td>21 (36.8%)</td>
<td>22 (36.7%)</td>
<td>21 (39.6%)</td>
</tr>
<tr>
<td>Clue cells</td>
<td>14 (24.6%)</td>
<td>32 (53.3%)</td>
<td>18 (34.0%)</td>
</tr>
</tbody>
</table>

NA: data not available.

* Follow-up data obtained by telephone; b P < .05; c P < .01.

rent trial, with a lower incidence with probiotics vs placebo at the 11-month follow-up interview. Overall, these outcomes suggest that the benefit-to-risk profile of probiotics is favorable. Obviously, any potential benefit of probiotics vs antibiotics can be confirmed only in a double-blind, randomized, placebo-controlled clinical trial.

It is well-established that BV is associated with low concentrations of vaginal Lactobacilli. In vitro studies have shown that various Lactobacillus strains inhibit G vaginalis production by the production of lactic acid and, to a lesser degree, hydrogen peroxide. A possible reason for the positive outcomes of this trial, especially because all women had a history of recurrent BV, is that we used a probiotic dose that is 80 times greater than the Lactobacillus volume recommended to restore and maintain a normal urogenital flora. Although the mechanism of action has not been elucidated fully, the probiotic load of this quantity likely overwhelms the vaginal microbiota and repopulates the vagina with adequate concentrations of Lactobacilli, inhibits or destroys pathogenic bacteria, and blocks the adherence of G vaginalis. Sexual history and smoking history did not influence BV and G vaginalis risk. However, these effects may have been blunted because no women reported moderate or heavy smoking or multiple sexual partners, both known risk factors for BV.

Although the cause of BV has not been elucidated fully, most studies support the notion that recurrent BV is not caused by re-infection but by relapse. This proposed mechanism supports the use of probiotics to prevent recurrent BV because abnormalities of the vaginal flora often persist, even in the absence of clinical symptoms.

Although we present no outcomes that directly compare probiotics with the standard of care (antibiotics), the risk-to-benefit profile of vaginal probiotic capsules is very favorable. Probiotic prophylaxis with vaginal capsules should be considered strongly in women with recurrent BV. Although this trial was conducted in women of only Asian descent, this probiotic blend is likely beneficial across all racial backgrounds. However, because different probiotics have varying levels of effectiveness, the beneficial results that were observed in this trial are applicable only to the vaginal capsules under study.

Given the promising outcomes that were shown in this study, we recommend that well-designed, randomized, controlled trials that will compare probiotics to the standard of care (metronidazole) be conducted to further determine the efficacy of probiotics for the treatment and prevention of BV.

ACKNOWLEDGMENTS

We thank Charlie Zhang, MD, and Kelly Zhang, RN of Sprim China Ltd. (Shanghai, China) for their help with study conduct and data collection; Michael Shleifer, PhD, for invaluable assistance with the design and performance of the study; and Mohamed Mubasher, PhD, and Morgan Stewart, PhD, for statistical support.

REFERENCES

24. Sobel JD, Ferris D, Schwebke J, et al. Suppressive antibacterial therapy with 0.75% metronidazole vaginal gel to prevent recurrent bac-